

Upgrading Oregon State's Multidirectional Wave Basin for Remote Tsunami Research

S.C. Yim, C.M. Pancake, and C.K. Sollitt

Project Goals

Develop experimental facility for tsunami research community

Leverage existing wave research facility

Expand capacity to tsunami waves and 3-D bathymetry

Enhance effectiveness of tsunami researchers

Reduce requirement for on-site presence

Facilitate re-use of previous experimentation

Support integration of simulation and experimentation

Wave Research Laboratory

Tsunami Wave Basin Expansion

Facility Dimensions and Generator Capacity

Existing Basin

Length: 87 ft

Width: 60 ft

Depth: 5 ft

Updated Basin

Length: 160 ft

Width: 87 ft

Depth: 6.6 ft

Existing Generator

Stroke: 3 ft

Velocity: 1.6 ft/sec

Tsunami Height: 0.7 ft

Updated Generator

Stroke: 6.6 ft

Velocity: 6.1 ft/sec

Tsunami Height: 2.6 ft

Instrumentation

- Electro-resistive wave gauges
- Doppler velocimeters
- Pressure gauges
- Accelerometers
- Force transducers
- Laser, radar
- Surface/underwater cameras
- Microphones
- Hydrophones

Sampling Rates

- 100 channels @ 100 Hz for 100 seconds (wave profiles, velocities)
- 20 channels @ 5 kHz for 10 seconds (impact pressures, forces, motion)
- 10 video channels @ 10M pixels @ 30 Hz for 100 seconds (6 surface and 4 underwater cameras)
- 4 audio channels @ 50 kHz for 100 seconds (microphones, hydrophones)

Vision of Future Operation

- Host web-based forum on tsunami research world-wide, status of state-of-the-art numerical models (e.g., FE, FD, BE, MAC, Hybrid) and codes development
- Host database of existing tsunami experiments
- Collaborate/facilitate potential Pls planning and design of experiments
- Build lab models and conduct tests at Tsunami Basin
- Real-time interaction with Pls and research community during model tests
- Provide web-based forum for post-test calibration of various simulation models with experimental results including graphical comparison and animation

Envisioned Tsunami Basin Experiments

- Scale Effects in Tsunami Runup and Velocity Measurements
 - Reynolds Number: Viscosity
 - Finite Amplitude : Convective Accelerations
- Macro-Roughness Effects on Tsunami Behavior
 - Wave Attenuation: Natural and Constructed Roughness
 - Debris Flow: Motion Initiation and Debris Concentration
- Tsunami Wave Forces on Structures
 - Small Structure Force Coefficients: Lift, Drag, Inertia
 - Large Structure Diffraction

Envisioned EQE Collaborative Experiments

- Example : Oil storage tank research
 - Foundation liquefaction and damage using NEES centrifuge
 - Tank damage from earthquake using NEES shake table
 - Tsunami impact forces using NEES tsunami basin
 - Tank buckling using NEES reaction-wall facility
 - Resultant oil spill flow pattern using NEES tsunami basin
 - Real-time collaborative simulation and experimentation linking all of above NEES facilities

OREGON STATE UNIVERSITY

O.H. HINSDALE WAVE RESEARCH LABORATORY

Networking Plan

Wave Research Lab
Data acquisition

Audio/video capture
Temporary caching

NACSE

Data filtering and conversions

Archive: Tsunami Experiment Database

Web-based access to audio/video

Web-based access to Experiment Database

Remote access toolkits

Key to NEES Program Success

Technical Issues

- Experimental facility fulfilling physical requirements of earthquake engineering research community
- Network architecture supporting real-time audio/video communication and data transfer among host and client institutions
- Usability engineering: ease of use by non-experts
- Management Issues
 - Real-time/off-line host-client efficient interaction protocols
 - User fee establishment (community and legal requirements)
 - Stable funding support for technical personnel, periodic maintenance and equipment upgrade
 - Protocols for timely dissemination of experimental results to Pl's, research community and general public

At the WRL

At NACSE

